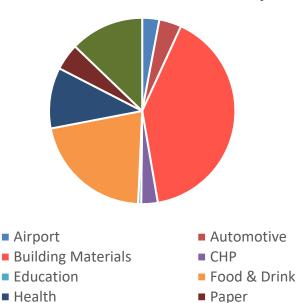

THE THE WAY TO SEE THE PARTY OF THE PARTY OF

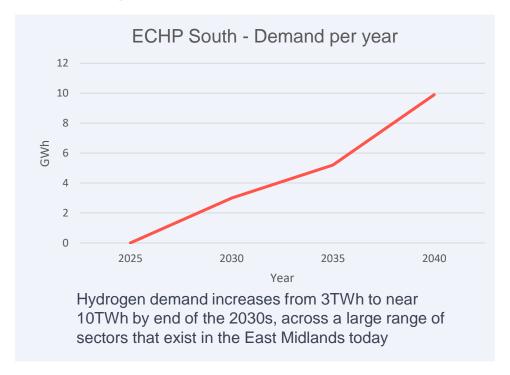
East Midlands Storage (EMStor): Alpha Phase

Tim Armitage, Energy Storage Geoscientist British Geological Survey

East Coast Hydrogen Pipeline (ECHP) – South Phase

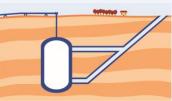
The pipeline routing remains unchanged, connecting hydrogen demand and enabling 1.9Mt/CO2 per annum to be saved once fully developed

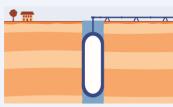




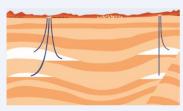
East Midlands Hydrogen Pipeline – has significant demand starting in 2030. GWh-scale storage initial estimate

Sector Demand in ECHP – South by 2030




SIF Discovery Phase a quick recap: Multiple storage technologies were evaluated based on identical parameters




Lined rock caverns

Lined rock shafts

Salt caverns

Porous rock

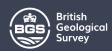
- Saline aquifers
- Depleted hydrocarbon fields

Parameters assessed

- Storage capacity
- Injection and withdrawal rate
- Potential for upscaling
- Implementation time
- Technology readiness level

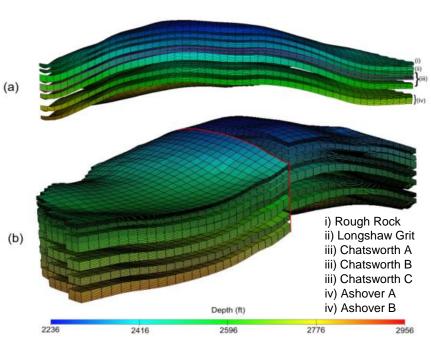
- Cost per GWh
- Cost of development
- Life cycle cost savings
- Hydrogen deployment
- Gas treatment requirements
- Cushion gas requirements

EMSTor Alpha Phase focuses on the Long Clawson Field


In total the Alpha Phase project has 9 work packages:

- WP1 Public Perception, stakeholder consultation and feedback – Cadent (lead) with University of Portsmouth
- WP2 Geological Feasibility Edinburgh/BGS
- WP3 Well Integrity Evaluation Edinburgh/Star
- WP4 Planning Pre-App Star
- WP5 Regulatory Permitting & Compliance Star
- WP6 Risk Assessment Star
- WP7 Business Case Uniper
- WP8 Project Consolidation, decision making & dissemination – Cadent
- WP9 Project Management Cadent

Focus on the Long Clawson field due to a number of technical considerations assessed by the project team



Long Clawson field:

An aging Carboniferous oilfield

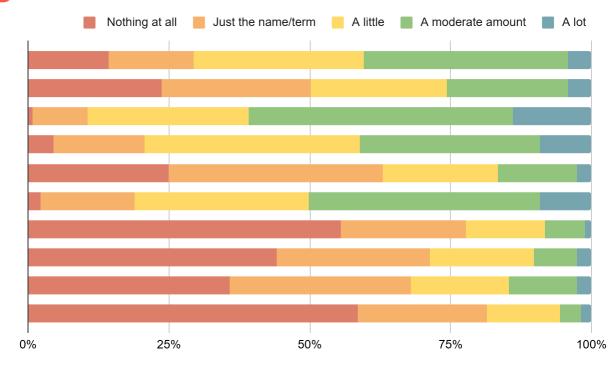
- Discovered 1986, first production 1990
- Made of 7 reservoirs divided by impermeable strata,
 c. 800 m bgl
- Rollover anticline bounded by a NE-SW trending normal fault
- 8 wells drilled 1987 -1997

Rough Rock

Cross- bedded coarse grained sandstone

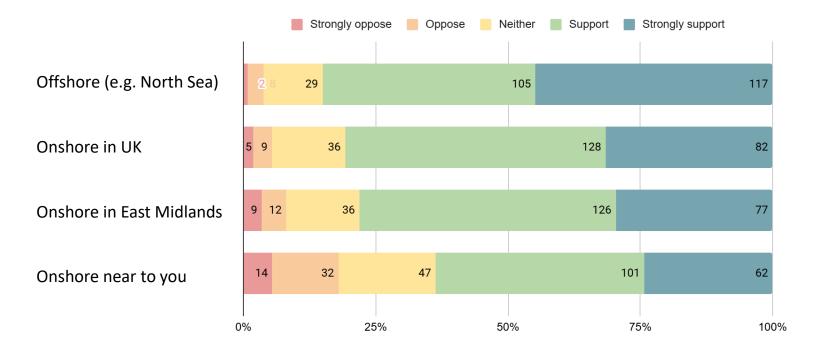
Chatsworth Grit

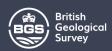
Fine to coarse grained, cross bedded, locally pebbly sandstones with minor interbedded mudstones and siltstone



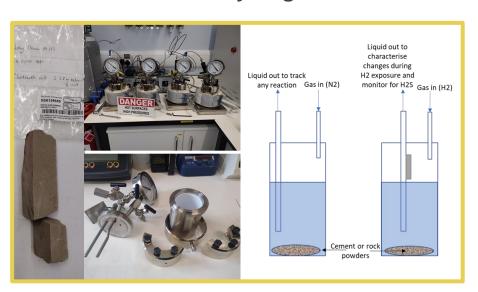
Awareness of is low. Attitudes towards GHS likely to be changeable

- Net zero
- Energy security
- Climate change
- Renewable ETs
- Hydrogen
- Carbon footprint
- Geological H₂
 storage
- CCS
- Decarbonisation
- Hydrogen economy





Some NIMBYism but majority support storage. These attitudes can change if a specific project is announced

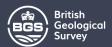


Geochemical experiments:

EM STOR

Reservoir rocks and well cements

Aim to assess the potential for reactions between reservoir rocks, well cements, formation fluids and hydrogen



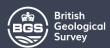
$$CO_3^{2-} + 2H^+ = CO_2 + H_2O$$

$$FeS_2 + H_2 = FeS + H_2S$$

$$2Fe_3O_4 + H_2 = 3Fe + 4H_2O$$

Microbiology experiments and methods

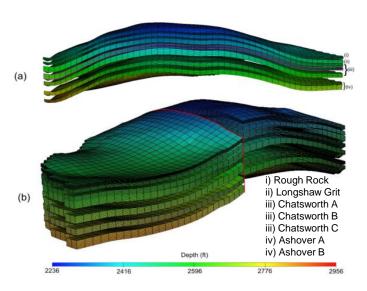
Formation fluids were collected from the Long Clawson field


Microorganisms have the potential to:

- Consume hydrogen
- Produce methane and hydrogen sulphide
- Precipitate minerals or produce biomass that could block flow paths
- Cause corrosion of metal infrastructure

Results

- Images show runs of DNA after PCR of bacteria, archaea, sulphate reducers and methanogens.
- Communities were found in both fields. Long Clawson sees presence of all types, including sulphur reducers and methanogens.
- This only shows likely presence. Need to know absolute numbers, growth rate and interaction with potential hydrogen...



Reservoir modelling of Long Clawson

The Long Clawson Field

Software: Eclipse (Schlumberger)

Reservoir Layer Selection Study

Reservoir	Pressure (2025) (bar)	Pore Volume (m³)	Oil Pore volume (m³) (2025)	Average Porosity	Average Permeability (mD)	Water Production (million liters)	Oil in Place : Oil Prod	Perforating wells
Rough Rock	26.7	5.6 x 10 ⁶	716,653	0.18	42.2	2.0	0.101	6
Longshaw Grit	34.8	5.5 x 10 ⁶	566,529	0.18	1.5	0.2	0.000	3
Chatsworth A	27.0	9.8 x 10 ⁶	1,165,719	0.17	33	49.8	0.097	6
Chatsworth B	27.8	1.1 x 10 ⁷	294,300	0.21	84.4	13.5	0.212	2
Chatsworth C	31.8	5.5 x 10 ⁶	41,187	0.16	4.3	0.0	0.000	0
Ashworth A	64.9	8.2 x 10 ⁶	709,489	0.21	2	9.1	0.000	2
Ashworth B	73.5	6.5 x 10 ⁶	2,997	0.15	0.6	1.1	0.000	1

Suitability for H₂ storage

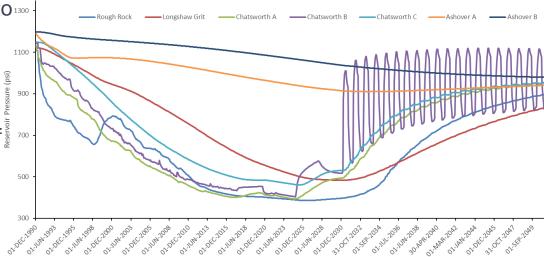
Poor

Medium

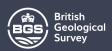
Good

Chatsworth B has the most suitable reservoir characteristics for H_2 storage

Hydrogen capacity estimation summary


 GWh's of storage is possible within Chatsworth B.

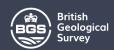
• Connectivity between layers due to 1300 fault – more cushion gas is therefore required with larger working gas volumes.


Maximum working gas capacity of up to 10 GWh over the long term (20 years).

Capacity estimation for Simulation 1a

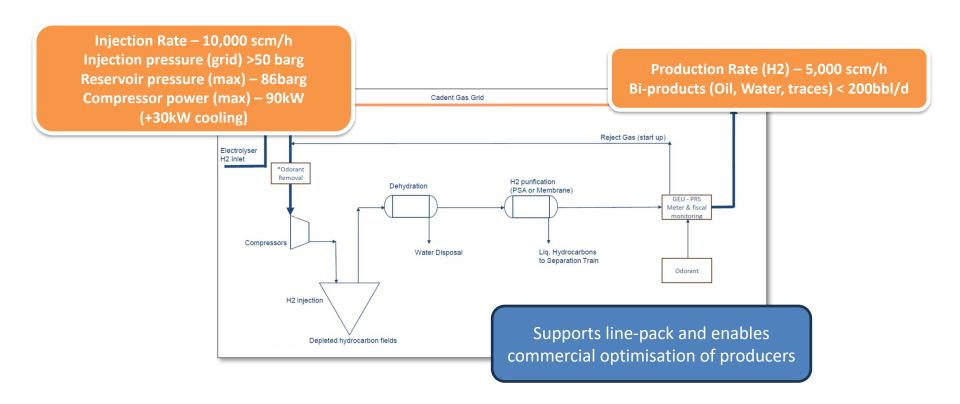
	1st Cycle	10th Cycle	20 th Cycle
	2.0	27.8	43.9
CG Injection (GWh)			
	6.3	12.2	10.7
WG injection (GWh)			
	4.0	10.1	9.3
WG production (GWh)			

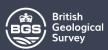
Topside facility - What do H2 storage facilities look like?



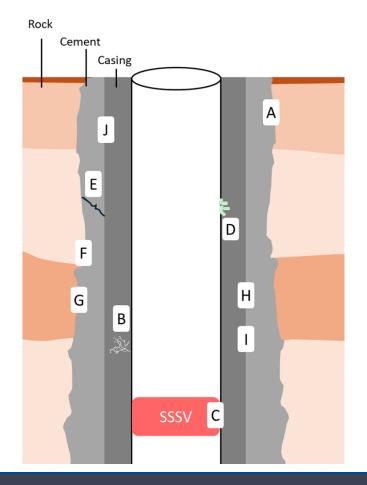
The current Long Clawson A Site

An existing H2 storage pilot plant in Austria

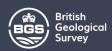




Basis of design

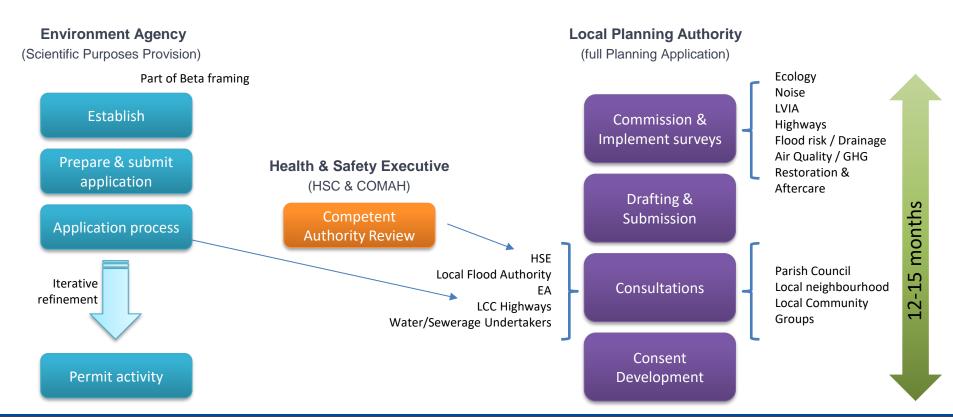


Well Integrity and Hydrogen Readiness


To evaluate the suitability of repurposing the existing wells for use in a hydrogen storage facility

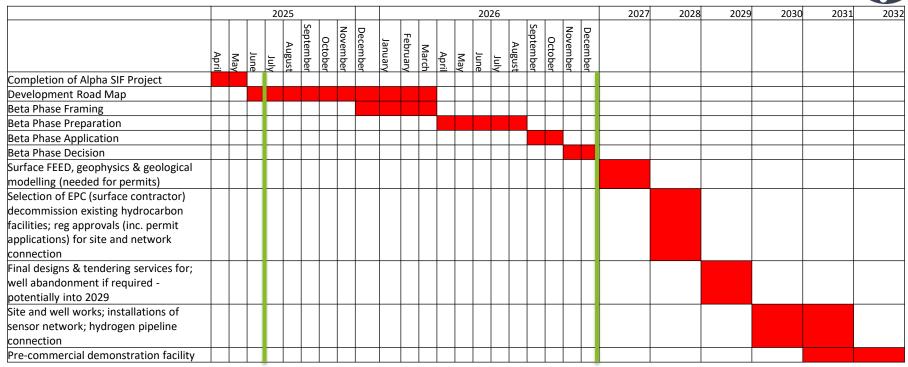
- 1) Assess the risk of geochemical reactions
- 2) Assess well integrity (since construction and through well life)
- 3) Evaluate the readiness for repurposing

Hydrogen behaves differently from Oil or Gas





Regulatory and Permitting Route for a pilot



Provisional Roadmap moving forward to a demonstration

Opening of the Hydrogen Transport Business Model Hydrogen Storage Business Model Contracts allocated

Tim Armitage timarm@bgs.ac.uk

Thank you

THE TOTAL PROPERTY OF THE PARTY OF THE PARTY

