

Modelling Energy Systems Including Multiple Stores

A contribution to MDES2024

Seamus Garvey

The Summary Message First!

- The least expensive net-zero energy system comprises renewable energy genⁿ. (mainly wind + PV) and a blend of storage solutions.
- Policy makers should not believe any one party. They should do the math themselves. It is not hard!
- A toolset called [NStore_sim] provides the computational wherewithal to find what combination of energy stores is most cost effective
- Documentation and code for [NStore_sim] can be found at a Google Drive URL accessible via ... www.TinyURL.com/NStore-Sim

Why a combination of stores is best.

[*NStore_sim*] requires that we know the following main metrics about all energy storage systems:

•	Cost per unit ^a of rated input power	(£/kW(e _{input}))
•	Cost per unit ^a of rated output power	(£/kW(e _{output}))
•	Cost per unit ^a of storage capacity (volume)	(£/kWh(e _{output}))
•	Round-trip efficiency	(%)
•	Cost per unit of energy-fill reduction [¥] (end – start)	(£/MWh)

<u>Different systems are good in different ways. No one system is ideal for all purposes.</u> At large scales, these metrics are effectively constants. We must know these constants [¥] for each storage type.

- **¤** These costs comprise both CapEx and OpEx components
- ¥ This matters only for very long-duration store types (including fossil-fuelled gen^{<u>n</u>})

[NStore_sim]: The problem statement

For some single-node energy system of interest, given the following information: ...

- Cost information about *N* different energy storage options
- A long trajectory of total electrical demand
- A corresponding profile of RE generation (that we will scale)
- Knowledge of the turnaround efficiencies of each storage option
- A clear criterion for what it means for the system to be acceptable

... what set of storage parameters will lead to lowest overall cost?

[NStore_sim] enables the user to answer this question effectively.

Note: [*NStore_sim*] does not find the exact lowest cost configuration but it does invariably find a good configuration with cost close to minimum.

4

What are the storage parameters ?

With *N* different stores, there are normally[¥] 3*N* storage parameters

Store Type	Rated Input Power (GW)	Rated Output Power (GW)	Capacity (GW(e)) (out)
1	?	?	?
2	?	?	?
3	?	?	?
4	?	?	?
:	:	:	:

¥ For some "store types", we need fewer than 3 parameters ... e.g.

Wind Integrated Storage ... Input Power and Output Power are not independent. Dispatchable Generation ... Input Power=0, Capacity= ∞ . We need Output Power and "*R.T.E*"

System problem definition:

- Demand Data ... Hourly data for 37 yrs as per Royal Society report
- Supply Profile ... From Ninja Renewables (37 years) (80% Wind & 20% Solar to balance seasons)
- Costs of R.E. ... £35/MWh or £40/MWh or £45/MWh
- Discount Rate ... 5% (*real* discount rate!)
- "Financial life" = the length of the supply & demand data sets. (i.e. O&M costs maintain systems in full pristine condition)
- Currency: ... GBP (2021)

No allowance for transmission costs here.

The only contingency here is 2GW slack at every hour.

Hydrogen Storage Only ... "(1)"

Using the same figures used in the Royal Society report:

Cost Component	Value
Input Power, CapEx	£333.0 / kW(e)
Output Power, CapEx	£315.0 / kW(e)
Storage Capacity, CapEx	£0.728 / kWh(e) (o/p)
Input Power, Annual OpEx	1.5% of CapEx
Output Power, Annual OpEx	1.5% of CapEx
Storage Capacity, Annual OpEx	1.5% of CapEx
Energy Deficit Cost (end – start)	£60/MWh

Hydrogen Storage Only ... "(1)"

The optimal system costs emerge as ...

Storage	R.E. £35/MWh	R.E. £40/MWh	R.E. £45/MWh
(1)	£57.83 /MWh	£64.48 /MWh	£71.10 /MWh

Mix in some MDES (ACAES) ... "(2)"

Using the same figures used in the Royal Society report:

Cost Component	Value
Input Power, CapEx	£220.0 / kW(e)
Output Power, CapEx	£280.0 / kW(e)
Storage Capacity, CapEx	£3.626 / kWh(e) (o/p)
Input Power, Annual OpEx	4.0% of CapEx
Output Power, Annual OpEx	4.0% of CapEx
Storage Capacity, Annual OpEx	1.0% of CapEx
Energy Deficit Cost (end – start)	£60/MWh

$$\eta = 68\%$$

Mix in some MDES (ACAES) ... "(2)"

The optimal system costs emerge as ...

Storage	R.E. £35/MWh	R.E. £40/MWh	R.E. £45/MWh
(1)	£57.83 /MWh	£64.48 /MWh	£71.10 /MWh
(1)&(2)	£56.24 /MWh	£62.00 /MWh	£68.77 /MWh
(2)	£65.40 /MWh	£72.24 /MWh	£78.57 /MWh

Mix in Wind Integrated Storage ... "(3)"

For background see this presentation to BEIS of 04/02/2021

https://docs.google.com/presentation/d/1jhBAuYzkNj7UzMXq0MWcSCECW0-mQxoW/edit?usp=sharing&ouid=104407450146476914335&rtpof=true&sd=true

Cost Component	Value
Input Power, CapEx	£100.0 / kW(e)
Output Power, CapEx	£100.0 / kW(e)
Storage Capacity, CapEx	£10.0 / kWh(e) (o/p)
Input Power, Annual OpEx	4.0% of CapEx
Output Power, Annual OpEx	4.0% of CapEx
Storage Capacity, Annual OpEx	1.5% of CapEx
Energy Deficit Cost (end – start)	£60 / MWh

Mix in Wind Integrated Storage ... "(3)"

The optimal system costs emerge as ...

Storage	R.E. £35/MWh	R.E. £40/MWh	R.E. £45/MWh
(1)	£57.83 /MWh	£64.48 /MWh	£71.10 /MWh
(1)&(2)	£56.24 /MWh	£62.00 /MWh	£68.77 /MWh
(1)&(2)&(3)	£55.49 /MWh	£61.72 /MWh	£67.83 /MWh
(2)	£65.40 /MWh	£72.24 /MWh	£78.57 /MWh

Mix in some Batteries ...

Using representative values

Cost Component	Value
Input Power, CapEx	£15.0 / kW(e)
Output Power, CapEx	£15.0 / kW(e)
Storage Capacity, CapEx	£100.0 / kWh(e) (o/p)
Input Power, Annual OpEx	2.0% of CapEx
Output Power, Annual OpEx	2.0% of CapEx
Storage Capacity, Annual OpEx	6.0% of CapEx
Energy Deficit Cost (end – start)	£60 / MWh

Mix in some Batteries ...

The optimal system costs are not lowered! (NB 1hr data intervals)

Storage	R.E. £35/MWh	R.E. £40/MWh	R.E. £45/MWh
(1)	£57.83 /MWh	£64.48 /MWh	£71.10 /MWh
(1)&(2)	£56.24 /MWh	£62.00 /MWh	£68.77 /MWh
(1)&(2)&(3)	£55.49 /MWh	£61.72 /MWh	£67.83 /MWh
(1)&(2)&(3)&(4)	£56.88 /MWh (!)	£61.89 /MWh (!)	£68.03 /MWh (!)
(2)	£65.40 /MWh	£72.24 /MWh	£78.57 /MWh

Blending in batteries does not give readily-visible advantages!

Storage times (for the batteries) ~5hrs

Mix in some Dispatchable Genn. ... "(5)"

Dispatchable Generation (a.k.a. gas-fired genn. with CCS) can be treated as a storage asset. It has 0 input power, near-infinite storage capacity (at 0 cost) and the store starts quite full.

Cost Component	Value
Input Power, CapEx	N/A (£0.0)
Output Power, CapEx	£500.0 / kW(e)
Storage Capacity, CapEx	N/A (£0.0)
Input Power, Annual OpEx	N/A (£0.0)
Output Power, Annual OpEx	2.5% of CapEx
Storage Capacity, Annual OpEx	N/A (£0.0)
Energy Deficit Cost (end – start)	£200 / MWh

elevallt

Mix in some *Dispatchable Gen^{n.}* ... "(5)"

The optimal system costs are not lowered!

Storage	R.E. £35/MWh	R.E. £40/MWh	R.E. £45/MWh
(1)	£57.83 /MWh	£64.48 /MWh	£71.10 /MWh
(1)&(2)	£56.24 /MWh	£62.00 /MWh	£68.77 /MWh
(1)&(2)&(3)	£55.49 /MWh	£61.72 /MWh	£67.83 /MWh
(1)&(2)&(3)&(4)	£56.88 /MWh (!)	£61.89 /MWh (!)	£68.03 /MWh (!)
(2)	£65.40 /MWh	£72.24 /MWh	£78.57 /MWh
(1)&(5)	£57.46 /MWh	£64.080 /MWh	£70.36 /MWh

With the assumed "representative values", *Dispatchable Generation* is only very slightly helpful compared with the use of only hydrogen

Closing remarks.

- Hydrogen store in caverns will certainly be the kingpin of future cost-effective Net-Zero energy systems.
- Further savings of ~5% easily possible by using a blend of storage solutions
- A powerful toolset called [NStore_sim] is available openly. (accessible through <u>www.TinyURL.com/NStore-sim</u>)
- [NStore_sim] enables robust conclusions to be drawn about the values of baseload and Dispatchable Generation.

University of Nottingham UK | CHINA | MALAYSIA

Thanks for listening.

A ANALY

Seamus.Garvey@nottingham.ac.uk