
Topologically Engineered Thermal Energy Storage for Carnot 
Batteries

Dr Adriano Sciacovelli

Associate Professor,

University of Birmingham, Birmingham, UK,

School of Chemical Engineering, Birmingham Energy Institute

a.sciacovelli@bham.ac.uk

Mix – MoXes

mailto:a.sciacovelli@bham.ac.uk


Carnot Battery
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 A “Multi-energy Hub” beyond Electricity-to-Electricity storage 

 For industrial decarbonization, energy districts, and grid storage 

sCO2 Operating Pumped Thermal Energy Storage for grid/industry cooperation

5M€, 2024-27; TRL5 ~0.5 MWh pilot

Task 44 Heat Integrated Carnot Batteries [2024-26]



Thermal Energy Storage – Key component of Carnot Batteries
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 Growing evidence that “unconventional” TES configurations are beneficial/needed for CBs

– Use of advanced TES materials (PCMs, TCS); Strong coupling with operation  fluid-machines (e.g. 

HP, ORCs, etc); 

Heat & Mass 
transfer

Phase changing material

 e  , […], Sciacovelli, A,  Appl Therm Eng. 2020 & 2023 5;180:11
Johnson  , et al, D  , ‘ arnot Battery 

workshop’, D  , Stuttgart, 2022

Thermochemical storage 
materials

Stengler J, et al, J of H&M Transfer,, 2021



Topological Engineered Thermochemical Energy Storage (I)  
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 At fundamental level transient heat and mass transfer govern the performance ; (λbed ~ 0.2-1 W/m/K) ; (Kbed ~ 1E-10 - 1E-14 m2 )

 Theoretical performance of TCS systems are thermodynamic-path dependent

Vacuum pump

Storage moduleE/C unit

HX2HX1

TCS closed-system

From low-T sources;
To low-T sinks

From high-T sources; 
To low-T appliances

Sorbate: NH3, H2O(g), …

Refs:  anente  , […], Sciacovelli A, Applied Energy 2021, 15;304:117980. Humbert G, Ding Y, Sciacovelli A.  Applied Energy. 2022 1;311:118633.

𝑨 + 𝑩 ↔ 𝑨 ∙ 𝑩 + ∆𝐻𝑟
0

Sorbent : Hydrates salts, Ammoniate Salts

Carnot Battery Thermo-chemical Energy Storage



Traditional approach to TES development vs Top. Optimization

5

Model 

trust-region

Design variable i

D
e
s
ig

n
 v

a
ri
a
b
le

 i
+

1

«Parallel» parametrizations

?

Design variable i

D
e
s
ig

n
 v

a
ri
a
b
le

 i
+

1

Topology optimization
Continuous morphing

Free of heuristic approach



Topological Engineered Thermochemical Energy Storage  (II) 
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The material distribution is the design variable

Sorbate: 

NH3, H2O(g), …
TCM HTF HCM

❑ fundamental answer to: what is the best conceivable TCS Reactor designs?

❑ It also offer a novel approach to develop and optimize TCS reactors

Humbert G, Sciacovelli A, Journal of Energy Storage 2023;64:107132.; Humbert G, Ding Y, Sciacovelli A.  Applied Energy. 2022 1;311:118633;  Pizzolato  , […], Sciacovelli A, Energy 2020 ;203:114797. 



How to describe topology? Material distribution
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Density Approach [1]

𝑠 = ቊ
1 ∀ 𝑥 ∈  Ω𝑏

0 ∀ 𝑥 ∈  Ω𝑑/Ω𝑏

Material 

interpolation

Smoothing 

description

Ω𝑏

Ω𝑑 s

s

• Material is described as a continuous scalar variable from 0 to 1. 

• The use of a continuous variable allows for gradient-based optimizers, which are computationally robust. 

However, artificial laws need to be adopted for intermediate material properties:

Pizzolato  , […], Sciacovelli A, Energy 2020 ;203:114797. Humbert G, Sciacovelli A, Journal of Energy Storage 2023;64:107132; 
 [1] M.P. Bendsoe, O Sigmund, 2002



The local physics of the problem → now it is design-dependent

 The description of material distribution is fully embedded into the 

physical description of the problem
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Mass conservation 𝜀 (𝑠)
)𝜕(𝑐

𝜕𝑡
+ 𝐮𝛻𝑐 = ሶ𝑚( ሶ𝛼(𝑠))

Darcy law 𝐮 = −
𝐾(𝑠)

𝜇
𝛻𝑝

Energy Equation C(s)
𝜕T

𝜕𝑡
+ 𝛻 ∙ λ(s)𝛻𝑇 = ሶq( ሶ𝛼(𝑠))

Reaction kinetics ሶ𝛼 = 𝑘𝑐𝑖𝑛 (1 − 𝛼) 𝑇𝑒𝑞,ℎ𝑦𝑑𝑟 𝑝 𝐾 − 𝑇 [𝐾]
1.79

𝑔(𝑠)

Design-dependent 

Diffusivity

Design-dependent 

Thermal diffusivity

Design-dependent 

Thermal conductivity

Design-dependent 

Reaction rate

Design-dependent 

Permeability



Putting everything together into suitable optimization algorithm: 
Design evolves freely – no initial guess
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Variation of penalization 

parameters every 30 iterations. 

Optimal PF

𝝆𝟎

FEM Analysis

Compute 
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Adjoint Problem
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Topological Designs outperform traditional configurations (I)
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Reaction advancement α [-]

EOM design MUM design Benchmark
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0.75 h

1.00 h

(a) (b) (c)

For the MUM problem: Packing factor is 10% (as benchmark). The EOM problem generated a packing factor of 18%. 
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Humbert G, Sciacovelli A, Journal of Energy Storage 2023;64:107132.  Ge R, [..], Sciacovelli A, Applied Thermal Engineering, 2020;180:115878;  Pizzolato  , […], Sciacovelli A, Energy 2020 ;203:114797. 



Larger amount of material for heat Exchanger improves effective energy 
storage density
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+27%

+286%

+47%

EOM allows higher effective energy storage density even if the amount of HEX material is higher (i.e. less 

thermochemical storage material)

Reaction advancement α [-]

EOM design MUM design Benchmark

0.50 h

0.75 h

1.00 h

(a) (b) (c)

Ω𝐻𝐶𝑀 = 10% (prescribed)Ω𝐻𝐶𝑀 = 18% (optimal)

EOM MUM



Influence of design factors is automatically accounted →
example: Effect of material porosity on topology
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EOM
V* = 40%

MUM
V* = 5%

ε = 0.30 ε = 0.50 ε = 0.69

 Lower amount of HEX material and thicker fins are preferrable for less packed materials (lower porosity).

EOM

ε [-] 0.30 0.50 0.70

ΩHEX [%] 0.27 0.21 0.18

Humbert G, Sciacovelli A, Journal of Energy Storage 2023;64:107132.  Humbert G, Sciacovelli A, ECOS 2022 Conference Proceedings



Topological engineering for thermo-fluid problems: Generality
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❑ TO generality: discovery of designs for whole class of thermo-fluid problems

❑ Example: open TCS reactors

TCS 
reactor

Compressor

HE1

From High-T
heat source

Air in
From ambient

Recuperator

Air out to 
ambient

Valve 1

Return to 
high-T source

From Low-T
user

To Low-T
user

HE2
Valve 2

Air out to 
ambient

Humbert G, Sciacovelli A, Journal of Energy Storage 2023;64:107132. 

Sorbate: 

NH3, H2O(g), …

Perforated grid

Hot dry air out

Cold humid air in

Porous TCM

Storage modules 

container
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The material distribution is the design variable



Topological Designs outperform traditional configurations (I)
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α [-] 

t = 100 h

Design - 2

t = 200 h

T [°C] 

Benchmark Design - 2

(a)

p-patm [kPa] 

(b)

c [mol/m3] 

(c) (d)

t = 200 h

t = 100 h

Benchmark Design - 2 Benchmark Design - 2

Benchmark

Humbert G, Sciacovelli A, Journal of Energy Storage 2023;64:107132. 

Perforated grid Porous TCM

Storage module
container

𝜼𝒆𝒙 → +𝟐𝟏𝟎%



Wrap up - Contributions

 Offers a novel approach to find optimal TES configurations It demonstrated that 

configurations found outperform traditional devices by ~50 – 250%

 Provides new insight on what fundamentally governs optimal performance, and 

demonstrated that some ‘established’ general guidelines are NOT true in general 

 Demonstrate that advancements at component-scale (HEXs, reactor) are 

essential and that there are ample margins to gain
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Topology optimization & Additive manufacturing
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 AM HX will be bigger and bigger & faster and faster

– ‘Old’ 3D printers (2018): X-Line (US), MetalFab (Netherlands), TS500 (China): ~ 500 x 500 x 500 mm3

– New 3D (2023): Sapphire/Velo 3D (US), NXG XII (DE), M1250: 1200 x 1200 x 1200 mm3 & 12 lasers
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Ge R, [..], Sciacovelli A, Applied Thermal Engineering, 2020;180:115878;  Pizzolato  , […], Sciacovelli A, Energy 2020 ;203:114797. 
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