High Performance CAES through elevated temperature thermal storage

Wei He Department of Engineering King's College London

Why CAES

CAES has a potential to be low cost for long-duration large-scale energy storage

A learning curve of CAES seems to start

He et al 2022 Schmidt et al 2017

Why CAES

Fig. 1. Diagrammatic map of UK sedimentary basins containing massive, bedded halite deposits and the location of operational, planned and cancelled UK gas storage facilities (after [24]). Note that thin, aerially restricted onshore lateral equivalents of thick offshore Triassic halite formations are not shown. Abbreviations: EISB - East Irish Sea Basin; KGSL - Keuper Gas Storage Limited. Contains Ordnance Survey data © Crown copyright and database rights 2015. Ordnance Survey Licence no. 100021290

Sufficient geological facilities in the UK and other regions:

Potential salt-cavern based CAES capacity is in the range of several tens of TWh to several hundreds of TWh exergy storage

Task #42:

Large-Scale, Medium-Duration Energy Storage

torage MDES: Regional Dimensions Subtask #3: Kickoff

IEA Technology Collaboration Programme

www.TinyURL.com/LS-MDES-task

Williams et al. 2022 Evens et al 2021

Why high-temperature CAES for grid-scale ES

Fig. I CAES and Thermal-power generation technology comparison

Current A-CAES systems have lower power capacities and lower operating temperature than conventional heat engines

High-power high-efficiency CAES could lead to a smoother transition for the system operators

Steady and dynamic system integration and operation

Hi-temperature TES: materials and devices High-voltage to hightemperature conversion

Research & development trend in grid-scale CAES

The deployment of A-CAES is accelerating, after a decade-long development globally

Research & development trend in grid-scale CAES

lower than conventional heat engines

after a decade-long development globally

Round-trip Efficiency (30-50%)

Fossil fuel (natural gas or oil)

Compression heat (wasted)

Theoretical analysis of Hi-CAES – power and efficiency

Dr Danlei Yang

The theoretical modelling could capture of key CAES features Theoretical analysis of Hi-CAES – power and efficiency

Dr Danlei Yang

Hi-CAES systems bridge D-CAES and A-CAES for highpower, high-efficiency CAES

Theoretical analysis of Hi-CAES – power and efficiency

Hi-CAES systems have potential to be competitive to current high-power generators

MDES 2024 MEDIUM DURATION ENERGY STORAGE 2024

FRIDAY, 12 JANUARY 2024

UNIVERSITYOF

BIRMINGHAM

THE UNIVERSITY

of LIVERPOOL

Hi-CAES: High Performance Compressed Air Energy Storage elevated through High-temperature Thermal Storage

> by Dr. J Sunku Prasad and Prof. Jihong Wang

ACAES system

Constant volume cavern

Assumptions

- Air is compressed to maximum cavern pressure and throttled to current pressure of the cavern.
- Inlet temperature to compressor 1 and compressor 2 is same (20°C).
- Charging time = discharging time.
- Mass flow rate is same for both charging and discharging.
- Constant pressure discharge (lower limit of cavern pressure).
- Air is throttled to minimum operating pressure of cavern during discharging.
- The compression heat is stored in a packed bed thermal energy storage (PBTES).
- No mixing as well as heat losses from the PBTES during charging, storage and discharging processes.
- Inlet temperature to the turbine is same as the outlet temperature of the compressor.

Parameters

- Cavern operating pressure range
- Number of compression/expansion stages

Losses considered

- Throttling losses
- Irreversibilities in compressor and turbine

RTE of ACAES system

- Maximum RTE of 79.9% is obtained for 143-170 bar beyond which there is no change
- There is no significant change in the RTE after two stages
- Work produced by the turbine is reduced with the increase in the number of stages, which affects the energy storage density.
- Power output of the turbine increases with increase in the cavern operating pressure range
- Outlet compressor temperatures for single stage: 1000-2600°C (practically not possible)

Hi-CAES system

Air Inlet

Hi-CAES system

• Inlet temperature to the second stage turbine is fixed and varied from 800 to 1500°C (i.e., T_{15})

Performance parameters

Questions?

Acknowledgement: Hi-CAES project consortium

