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Why CAES

PHESCAES

He et al 2022 
Schmidt et al 2017

CAES has a potential to be 

low cost for long-duration 

large-scale energy storage 

A learning curve of CAES 

seems to start 



Williams et al. 2022
Evens et al 2021

Why CAES
Sufficient geological facilities in the UK and other 

regions:   

Potential salt-cavern based CAES capacity is in 

the range of several tens of TWh to several 

hundreds of TWh exergy storage
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Fig. 1 CAES and Thermal-power generation technology comparison  

Type
Heat source & 
Operating T °C

D-CAES Natural gas 
(850-950)

A-CAES Compression 
heat (80-150)

I-CAES Compression 
heat (Ambient)

Hi-CAES Compression 
heat & HTES 
(800-1000)

Why high-temperature CAES for grid-scale ES 

Current A-CAES systems 

have lower power capacities 

and lower operating 

temperature than 

conventional heat engines   

High-power high-efficiency 

CAES could lead to a 

smoother transition for the 

system operators



High-voltage transmission lines

Air reservoir  

LTES

HTES

Heat storage

Compressed air storage

Low-cost 

low-

carbon 

off-peak 

power
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peak power

Air in Air out

Long-

duration 

flexibility to 

micro-grid 

scale local 

energy 

systems  
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generation 
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Steady and dynamic system 

integration and operation

Hi-temperature TES: 

materials and devices

High-voltage to high-

temperature conversion 

Hi-CAES project
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Research & development trend in grid-scale CAES 

The deployment of A-CAES is accelerating, 

after a decade-long development globally 
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The deployment of A-CAES is accelerating, 

after a decade-long development globally 

The operating temperature of A-CAES 

increased with the capacity, but still much 

lower than conventional heat engines  



Per Unit Power (>100 MW) 

Round-trip Efficiency (30-50%)

Fossil fuel (natural gas or oil)

Compression heat (wasted)

What is Hi-CAES 
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The Hi-CAES framework 

could lead to high-power 

high efficiency CAES 

without fossil fuels  
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Theoretical analysis of Hi-CAES – power and efficiency 

The theoretical modelling 

could capture of key CAES 

features 

Dr Danlei Yang 
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Hi-CAES systems bridge D-

CAES and A-CAES for high-

power, high-efficiency CAES 

Dr Danlei Yang 
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Theoretical analysis of Hi-CAES – power and efficiency 

Hi-CAES systems have 

potential to be competitive to 

current high-power generators 

Dr Danlei Yang 
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ACAES system

Assumptions

• Air is compressed to maximum cavern pressure and throttled to current pressure of the cavern. 

• Inlet temperature to compressor 1 and compressor 2 is same (20°C).

• Charging time = discharging time.

• Mass flow rate is same for both charging and discharging.

• Constant pressure discharge (lower limit of cavern pressure).

• Air is throttled to minimum operating pressure of cavern during discharging.

• The compression heat is stored in a packed bed thermal energy storage (PBTES).

• No mixing as well as heat losses from the PBTES during charging, storage and discharging processes. 

• Inlet temperature to the turbine is same as the outlet temperature of the compressor.  
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Constant volume cavern

• Cavern operating pressure range

• Number of compression/expansion stages

Parameters

• Throttling losses

• Irreversibilities in compressor and turbine

Losses considered
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Tinlet = 20°C (compressor inlet temperature)

• Maximum RTE of 79.9% is obtained for 143-170 bar beyond which there is no change

• There is no significant change in the RTE after two stages

• Work produced by the turbine is reduced with the increase in the number of stages, which 

affects the energy storage density.

• Power output of the turbine increases with increase in the cavern operating pressure range

• Outlet compressor temperatures for single stage: 1000-2600°C (practically not possible)
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Hi-CAES system

Figure. Diagram of a gas turbine engine

Figure. Schematic of Hi-CAES system

HTES = Combustion chamber 

• Direct Joule heating/ HT heat pump 

• Indirect heating

• Operating temperatures: 800-1600°C

Charging: 1-2-3-4-5-6-7

Discharging: 8-9-10-11-12-13-14-15-

16-17-18-19

  

  

        

  

  

   

 

        

  

  

  

  

  

                    

           

             

             

     

 
 
 
 
 
 
 

 

   

   

   

   

                   

                   

            

  

         

      

    

           
         

   

   

   

   

   

https://energyeducation.ca/encyclopedia/Natural_gas_power_plant#cite_note-8


Hi-CAES system

• Inlet temperature to the second stage turbine is fixed and varied from 800 to 1500°C (i.e., T15)

Note: Effectiveness of recuperator is considered as 0.8
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Performance parameters

For Hi-CAES:

• Power capacity of Hi-CAES is doubled than the ACAES. 

• RTE of Hi-CAES is 68% than 75.8% for ACAES. 

• Texhaust (Hi-CAES) = 310-330°C, which has potential for WHR. 

• Hi-CAES provides more flexibility

• Higer power capacity
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