

Next-generation CAES & Project SAVECAES Medium duration energy storage, 12/1/2024

Edward Barbour, Daniel Pottie, Maury Martins-De-Oliveira-Junior Senior Lecturer in Energy Systems Centre for Renewable Energy Systems Technology Loughborough University

What is next-generation CAES?

Barbour, E., & Pottie, D. L. (2021). Adiabatic compressed air energy storage technology. Joule, 5(8), 1914-1920.

CAES is often misunderstood

- □ CAES is a thermomechanical system, where both *work* and *heat* have a value.
- Different CAES variants balance work and heat differently.
- 'if the compressor and expander each operate at an efficiency of 80%, then the process efficiency cannot be greater than 64% (80% x 80%)' – Findings from Storage Innovations 2030: Compressed Air Energy Storage, USDOE.
- □ If 80% isentropic efficiency:

Challenges for next-generation CAES

- □ The thermodynamic concepts are well established.
- □ Challenges relate to engineering of the constituent components.
- Off-the-shelf components are not generally suitable.

	Off-the-shelf	Optimal for CAES	
Compressor	Min. work per unit air	Reversibility (high Tout)	
Turbine	Max. work \rightarrow (high T_{in} , high pressure ratio)	Low pressure ratio; low T_{in}	

- Next-generation CAES designs require innovation across multiple components.
- □ A healthy scepticism around previous claims is useful.

Challenges for next-gen CAES

Introducing SAVECAES

- Sustainable, Affordable and Viable Compressed Air Energy Storage
- □ £1.1 Million EPSRC-funded project
- Based on the hypothesis that energy systems incorporating suitablysized CAES plants can deliver huge cost savings to UK.

□ Experimental work (LU)

Ultra-high pressure (UoN)
 Heat management (UoL)
 Resource availability (BGS)

□ Experimental work (LU)

□ Ultra-high pressure (UoN)

Heat management (UoL)Resource availability (BGS)

To establish an AA-CAES plant with storage pressure 200 bar instead of 50 bar with the same mass flowrate, there is a potential for a 7.8% reduction in \$/kW expenditure to achieve 44% more exergy (MWh/kg).

- □ Experimental work (LU)
- □ Ultra-high pressure (UoN)
- □ Heat management (UoL)

- Experimental work (LU)
 Ultra-high pressure (UoN)
 Heat management (UoL)
- □ Resource availability (BGS)

location	Pressure range (bars)	Number of caverns	Combined usable volume of all caverns (Million m ³)	Combined theoretical exergy storage capacity of all caverns (TWh)
Wessex	250 - 350	8609	2428.7	7.643
	>=350	3447	1453.0	5.743
	Total	12056	3881.7	13.386

Conclusions

- Next generation (fuel-free) CAES is achievable, however engineering innovations are still required across multiple components.
- □ A healthy scepticism around previous claims is useful.
- We badly need more transparent experimental work, focussed on engineering practicality.
- Exciting directions for the future include isobaric operation, ultra-highpressure systems and colocation/integration with waste/other heat sources.