# The effects of weather and climate change

# Tony Roulstone University of Cambridge

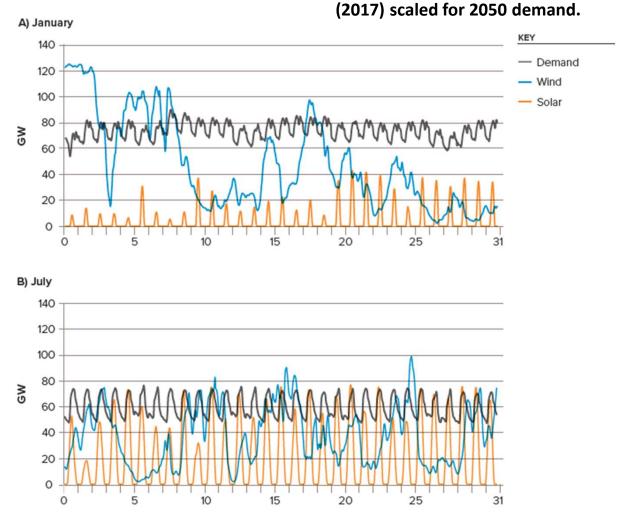




# Renewable Energy System Weather Effects & Energy Storage

**Royal Society - Long Duration Energy Storage – Sep 2023** 

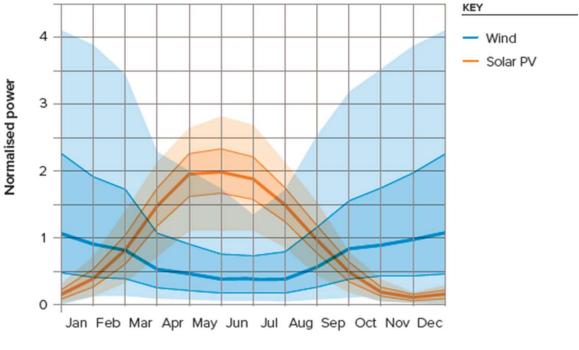
**Tony Roulstone** 


**Department of Engineering, University of Cambridge** 

armr2@cam.ac.uk



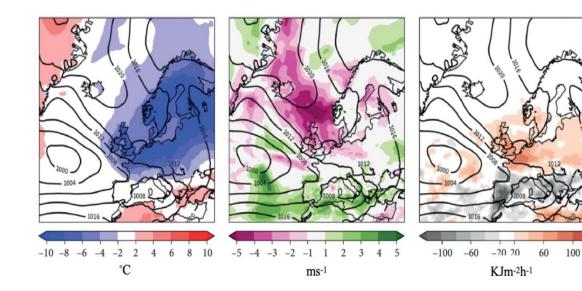
### **Renewable energy studies**


- 2050 demand (570 TWh) mean power 65 GW +/- 20 GW;
- Supply: Wind + Solar varies 10-180 GW;
- Grid's future role: from meeting demand to controlling supply;
- Many weather studies How are ours different?
  - High renewable supply shares > 60%;
  - Net-zero -> no dispatchable fossil fuel to balance system;
  - Days, weeks, seasons & many years continuous sequence of weather data;
  - Seeks to understand physical behaviour before economics;
  - System information visible not lost in complex models – hard to interrogate.



**Demand & Supply - today's weather** 

## **Renewable supply variability**


- Range of daily-mean variations within month (5<sup>th</sup> percentile) - large:
  - Solar x 2.5
  - Wind x 8
- Annual range (5<sup>th</sup> percentile) larger:
  - Solar x 25
  - Wind x 40
- Mean wind and solar power are to some degree complementary;
- Hence solar/wind mix is important 20/80 is found to be optimal – renewable supply deficit and energy storage size minimised.



Source: Met Office.

Distribution of normalised daily mean wind and solar generation 1979 to 2013 with 5th and 25th percentiles

### **Extreme weather stress events**



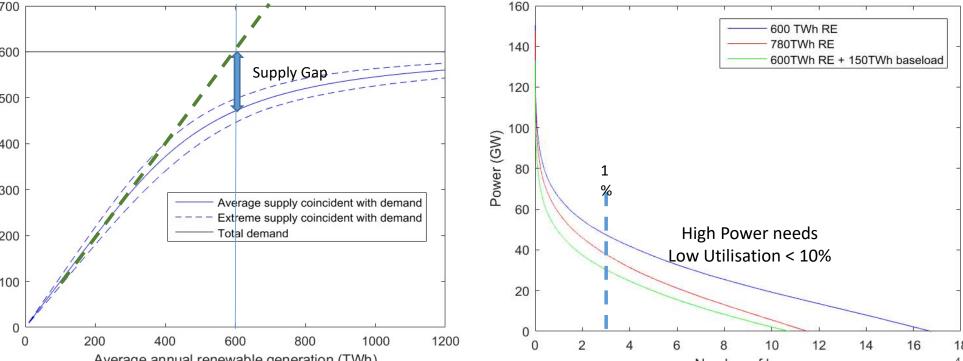
Average of top ten periods of residual demand 1980-2019 deviation from the mean:

Temperatures at 2 m, Wind speed at 100m, and Solar irradiance.

**Met Office** 

| Stress events                    | Description                                          | Frequency           |
|----------------------------------|------------------------------------------------------|---------------------|
| Summer wind drought – frequent   | One full day of very low wind speed<br>in summer     | One or two per year |
| Summer wind drought – infrequent | Up to four weeks of very low wind<br>speed in summer | Once every 10 years |
| Winter wind drought              | Up to a week of very low wind<br>speed in winter     | Every few years     |

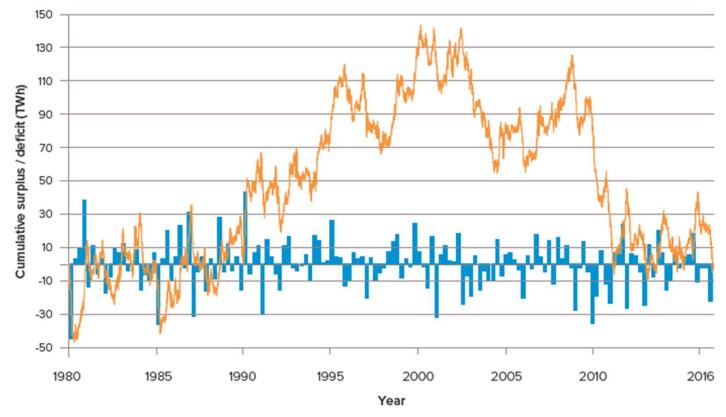
Weather – Extreme Stress Events


#### Met Office

### Mistiming of renewable supply v demand

700 600 TWh RE 780TWh RE 140 600 600TWh RE + 150TWh baseload Supply-to-demand per year (TWh) Supply Gap 120 500 Power (GW) 400 1 % 300 Average supply coincident with demand 60 Extreme supply coincident with demand **High Power needs** Total demand 200 40 Low Utilisation < 10% 100 20 0 0 200 400 600 800 1000 1200 0 0 2 6 8 10 12 14 16 18 Δ Average annual renewable generation (TWh)  $imes 10^4$ Number of hours

- When mean supply equals demand >120 TWh is mistimed not available for supply and is surplus;
- High complementary power requirements above 100 GW very few hours in period 37 years. ٠
- Grid to match generation (North) to demand (South) and much higher level of circulating power ~200<sup>2</sup>GW •


600 TWh Solar/Wind: 20/80 On/Offshore: 30/70



### Long term energy surpluses & deficits

- Variations in quarterly and annual residual supply not evenly distributed;
- Continuous sum of residual supply shows decadal trend – for 570 TWh pa supply system max deficit ~150 TWh;
- One year of data is not enough

   multi-decadal studies (UK, Germany, US) show storage volume needs are double mean year;
- Deficit reduced but not eradicated by additional renewable capacity.



Cumulative differences between supply and demand for 2050 – quarterly & 37 years

### Filling the gaps in renewable supply

| Approach                  | Method               | Scope                                                                  | Pros                                                               | Cons                                                                                                       |
|---------------------------|----------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Ameliorate                | Demand-Side Response | Peak-lop - incentives,<br>digital grid & EV<br>batteries.<br>Emergency | Low cost<br>Grid supply<br>maintained.                             | Limited in power range &<br>duration 20+GW few hours<br>Can seldom be implemented –<br>political risk.     |
|                           | Interconnector to EU | 20 GW planned<br>30 GW possible                                        | Geographic<br>dispersion - hedge<br>against supply<br>variability. | Extreme weather affect many<br>countries across EU.<br>Depend excess supply &<br>capacity being available. |
| Baseload                  | Bio-Energy CCS       | 50 TWh pa limited by fuel availability                                 | Scale of supply variation reduced.                                 | Power costs higher.                                                                                        |
|                           | Nuclear              | Plans for 25% nuclear supply before 2050                               | Secures a share of supply.                                         | Uncertainty of timely delivery of new capacity.                                                            |
| Flexible<br>complementary | CCGT & CCS           | 100 GW of new plant<br>– utilisation <10%                              | Technology<br>demonstrated at<br>scale                             | Some carbon & upstream<br>fugitive emissions.<br>High energy cost.                                         |
|                           | Energy Storage       | 100 TWh of storage with 100 GW power                                   | Not require new technology                                         | Not demonstrated at scale.<br>High capital costs.                                                          |

## **Storage needs - Weather-driven periodicity**

• Storage moves energy from time of excess to times when there is a deficit

How much energy and How long stored?

**Storage Volume** proportional to **Power range** x **Duration** of storage/Output **efficiency** 

- Characteristics of daily, weekly and seasonal/multi-year storage needs for three selected periods
- Fully renewable 30% overcapacity & 20/80 Solar/Wind implicit period efficiencies 90/70/40%

| Storage period  | Stored volume | Power needs | Energy from store pa | Full cycles pa |
|-----------------|---------------|-------------|----------------------|----------------|
| Short - 6 hours | 200 GWh       | 60 GW       | 8 TWh pa             | 40-50          |
| Medium – 1 week | 2.8 TWh       | > 100 GW    | 52 TWh pa            | 22             |
| Long term       | 55 TWh        | > 100 GW    | 22 TWh pa            | Less than one  |

- Minimum storage volume 26 days of mean demand but large power overlap -> uneconomic.
- Very few cycles of longer duration stores -> affects case for investment smarter scheduling required.