

Why Multiple Stores Lead to Reduced Cost

Energy Storage systems have four main metrics:

- Cost per unit of rated input power
- Cost per unit of rated output power
- Cost per unit of storage capacity (volume)
- Round-trip efficiency
$\left(£ / \mathrm{kW}\left(\mathrm{e}_{\text {input }}\right)\right)$
$\left(£ / \mathrm{kW}\left(\mathrm{e}_{\text {output }}\right)\right)$
$\left(£ / \mathrm{kWh}\left(\mathrm{e}_{\text {output }}\right)\right)$

Different systems are good in different ways. No one system is ideal for all purposes. At large scales, these metrics are constants.

Understanding

Multiple Stores -

 Start with the Single Store Case.Consider, initially, that we have just one store in the system.

Four distinct parameters determine both the system cost and whether that system will meet all demand.

- Rated input power
$G \quad\left(G W\left(\mathrm{e}_{\text {input }}\right)\right)$
- Rated output power
- Storage capacity (volume)
- Over-generation factor*

If parameters (G, H, V) lie within reasonable bounds, then there will be some minimum value X or which all demand is met $\left(X=X_{\text {min }}\right)$.

* $X=1.2$ indicates: total quantity of electrical energy generated in the record exceeds the total quantity of electrical energy consumed by 1.2.

Testing Whether a Single-Store System is Adequate to Meet Demand.

Any given single-store system is described by the 4-tuple, (G, H, V, X).

We can test whether this system will meet all demand by

- Initialising the energy in store at some value such as $0.7 \times V$
- Stepping through each (1-hour?) period in the record and ...
- If supply exceeds demand, put (some of?) the excess into store
- If demand exceeds supply, draw (some of?) the shortfall from store
- Adjust the energy level in the store

We might check that the energy in store at the end is close to or equal to the energy that was in store at the start of the record.

No "scheduling" problem here and no purpose for "forecasting".

Optimising the System with a Single Store

Any given single-store system could be optimised by exploring the 3D space $\ldots(G, H, V)$. For each "point" in this space, we calculate the associated value $X_{\min }$ as a dependent variable.

System cost is then determined from the 4-tuple ($G, H, V, X_{\text {min }}$).
'Straightforward to put this into an optimisation for minimum cost.

Understanding

 Multiple Stores Now with 2 Stores.Consider now that we have two stores in the system.

Seven distinct parameters determine both the system cost and whether that system will meet all demand.

- Rated input powers $\quad G_{1}, G_{2} \quad\left(G W\left(e_{\text {input }}\right)\right)$
- Rated output powers
$H_{1}, H_{2} \quad\left(G W\left(e_{\text {output }}\right)\right)$
- Storage capacities (volumes) $V_{1}, V_{2} \quad\left(G W h\left(\mathrm{e}_{\text {output }}\right)\right)$
- Over-generation factor*
X
()

If parameters $\left(G_{1}, G_{2}, H_{1}, H_{2}, V_{1}, V_{2}\right)$ lie within reasonable bounds, then there will be some minimum value X or which all demand is met ($X=X_{\text {min }}$).

[^0]University of Nottingham

Testing Whether a 2- Any given 2-store system is described by the 7-tuple, Store System is $\quad\left(G_{1}, G_{2}, H_{1}, H_{2}, V_{1}, V_{2}, X\right)$.

We can test whether this system will meet all demand by

- Initialising the energy in each store $\# i$ at some value such as $0.7 \times V_{i}$
- Stepping through each (1-hour?) period in the record and ...
- If supply exceeds demand, spread (some of?) the excess into stores
- If demand exceeds supply, draw (some of?) the shortfall from stores
- Adjust the energy levels in the stores

Scheduling needed to decide which store has priority for filling/emptying

A Primitive
Scheduling Approach for a 2-Store System

A primitive approach for scheduling a 2-store system would be to prioritise the store with the higher round-trip efficiency at all times. Then:

- If supply exceeds demand, put as much as possible into the moreefficient store (respecting limits on input power and energy in store)
- If demand exceeds supply, draw as much as possible from the moreefficient store (respecting limits on output power and energy in store)

This primitive approach does not lead to near-optimal solutions because the more-efficient store is often either full (or empty) so that its input (or output) power is not then in-play.

A good scheduling approach ensures that the power-conversion machinery of both stores is nearly always in-play. Informally ... keep the

A Near-Optimal Scheduling Approach for Multiple Stores

A good scheduling approach for the operation of multiple stores in a system is described by Zachary et al. [1]

The scheduling algorithm is greedy.

Within constraints, energy is preferentially put into the stores with highest marginal value and energy is preferentially withdrawn from stores with lowest marginal value.

University of Nottingham UK I CHINA I MALAYSIA
[1] Zachary, S. Scheduling and dimensioning of heterogeneous energy stores with application to future GB storage needs. In review. https://arxiv.org/abs/2112.00102.

Scheduling Illustration:

University of Nottingham

Illustration of scheduling working with a 3-store system:
\#1: Wind-Integrated Storage. $G_{1}=30 \mathrm{GW}, H_{1}=20 \mathrm{GW}, V_{1}=1,050 \mathrm{GWh}, \eta_{1}=80 \%$
\#2: ACAES. $\quad G_{2}=15 G W, H_{2}=10 G W, V_{2}=2,800 G W h, \eta_{2}=65 \%$
\#3: Hydrogen Storage. $\quad G_{3}=37 G W, H_{3}=65 G W, V_{3}=80,000 G W h, \eta_{3}=41 \%$
WindTP(g), ACAES(r), H2(b) fill levels (\%)for X=100.0000 (\%)

Optimisation Results for a 2-Store System

Combining ACAES with hydrogen-based storage provides for significant cost reductions - dependant on machinery costs and round-trip efficiency

University of Nottingham

Closing Remarks
Hydrogen storage will obviously be needed in very large measures in a cost-optimal Net-Zero UK. If we allow only 1 store, it must be hydrogen

Blending stores could give significant cost reductions - credibly $\sim 10 \%$.
Employing multiple stores requires a scheduling algorithm. A good one exists ([1]) but further improvements are possible.

With multiple stores, cross-charging sometimes helps to keep all powerconversion resource in-play and forecasting becomes relevant.

Optimisations indicate (as in [2]) that although hydrogen stores must be much larger in capacity (volume) than medium-duration storage such as ACAES, (~ 80 TWh: $\sim 3 T W h$ depending on assumptions), $\sim 65 \%$ of all energy emerging from storage will come from the medium-duration store.

University of Nottingham

[^1]
Thanks for listening

[^0]: * $X=1.2$ indicates: total quantity of electrical energy generated in the record exceeds the total quantity of electrical energy consumed by 1.2.

[^1]: [2] Cosgrove, P., Roulstone, T. and Zachary, S., 2023. Intermittency and periodicity in net-zero renewable energy systems with storage. Renewable Energy, 212, pp.299-307.

