The Emerging Hydrogen Economy Why do we need storage?

Andres Fernandez SVP. USA National Market Leader - Hydrogen 2023

wsp

Figures as at June 29, 2019 *Note: Total staff figures also includes 425 employees from Louis Berger International

WSP experience in developing salt caverns

40+ Years of Design and Construction Management Experience. Including a 1 Mm3 H2 cavern for Air Liquide in 2015. Previously known as PB-KBB, Fenix & Scisson and Parsons Brinckerhoff

Salt Caverns - crude oil, NGL including ethane, ethylene, petrochemicals, LPG, refined product, feedstocks	173
Salt Caverns - natural gas, hydrogen, CAES	56
Salt Caverns, Chemical Feedstock - brine production	15
Hard Rock Caverns - propane, butane; 235MM Bbl total	83
Leach Plants - 126,000 total hp	21
Gas Compressor Stations - 163,000 total hp	11
Brine Disposal Wells - Over 50 miles total drilled depth	60
Industrial Disposal Wells	30
Acid Gas Disposal Wells	7

\\SD

Market trends alignment in favor of hydrogen.

- > Market is aiming at significantly reducing CO_2 emission.
- > Solar and wind power generation increasing rapidly and cost per KWh decreasing.
- > Market shows significant periodic surplus-deficit pattern.
- > Cost of electrolysis is dropping quickly with mass-scale production units.
- > Efficiency of natural gas / H2 turbines improving.

Hydrogen

100 GWh

1TWh

10 TWh

What is new? Why now?

Geological Energy Storage. Driving factors

- Increase usage of renewable energy sources.
- > Target to reduce amount of curtailment energy & better integration of RE.
- Increased distance between energy generation and consumption hubs.
- Looking at solving energy demand variance through the year.
- New technological developments.
- Export market -New energy carriers such as hydrogen and ammonia.
- Salt cavern storage is the most cost-efficient solution.

Potential LCOS 0.30-0.60 \$/Kg H2 (*)

H2 for Energy Storage. Driving factors

Renewable energy sources

vsp

ACES Delta (UT) Green Hydrogen UGS Project

ACES ()ELTA

- > World's largest green hydrogen storage project.
 - > Total of 9 MMbbls or ~1,4 Mm3. Total storage capacity of ~ 20,000 metric tons
- > Future Ready. Helping society to advance the decarbonization process of the industry.
- > Use excess electricity from the western United States region's renewable generation assets to produce renewable green hydrogen.
- Energy storage perspective, both caverns will hold the equivalent of 300 GWh of carbon-free dispatchable energy.
- > According to the EIA in 2020, current installed battery storage across the U.S. is 1.2 GWh.
- > Would be the 4th and 5th hydrogen caverns developed in the USA.

7

Bases of design

Case Study	
WSP USA	
H2 Projects	

III. Cavern Characteristics

Maximum Operating Pressure Gradient 0.80 psi/ft • Minimum Operating Pressure Gradient 0.30 psi/ft • • • Total Depth 5,350 ft ٠ ٠ • •

ACES DELTA

wsp

Planned vs Actual Casing Depths

۱SD

Project Status

- Engineering innated 2021
- Field work started June 2022
- Both wells currently drilled to a depth of 1.700m.
- 41cm production casing set at ~1.300m.
- Total of 120 drilling days per well.
- MIT conducted
- Solution mining to start April 2023 @ 19.000 liters/min.
- Cavern #1 to be completed July 2025 #2 by Dec 2026

Cavern #8	
Roof:	2,400
Floor:	3,968
Total height:	1 569

Average Diameter: 120' Empire State Building Total height: 1,250'

Total height: 1,250' (without antenna) Dimensions (base): 187' by 424'

Leach plant equipment, leaching wellhead and hole opener

ACES DELTA

wsp

Looking Ahead at the Hydrogen Economy / storage

A McKinsey & Company report estimated the hydrogen economy could generate \$140 billion in annual revenue by 2030, projecting that hydrogen could meet 14% of total domestic energy demand by 2050.

As renewable energy becomes more efficient and commonplace, excess capacity during non-peak demand can be increasingly used to generate hydrogen, thus "storing" energy.

Analyzing market behaviour from the natural gas sector, 10-15% of the total annual hydrogen consumption may have to be stored at any given moment.

Thank you!

Andres Fernandez USA Market Leader Hydrogen

wsp.com

