

WE MAKE THE EARTH THE BEST PLACE FOR STORING ALL ENERGIES

Different ways to store H₂ underground & Why the Lined Rock Cavern solution?

Content

- 1- Introduction of Geostock
- 2- Role of H₂
- 3- What is the potential market ?
- 4- Different ways to store H₂
- 5- Why the LRC solution ?

1- GEOSTOCK Introduction

Geostock group organizationA global presence

 Geostock owns minority shareholdings in underground storage assets operated by or in association with us.

100%
100%
100%
100%
100%

FRANCE GEOSTOCK	100%
GEOMÉTHANE*	1%
	CNP ASSURANCES 49% STORENGY 50%
GERMANY ugs	60%

USA GEOSTOCK SANDIA	100%
BRASIL GEOSTOCK DO BRASIL	100%
MEXICO GEOSTOCK MEXICO	100%
GEOSTOCK OPERACIÓN	100%
SHALAPA LPG STORAGE*	5%
	CYDSA 95%

Our Fundamental Commitments (QHSE)

Our SAFETY Objectives

Certification

ISO 9001 (QMS), 14001 Environmental & 45001 (OH&S MS)

GEOSTOCK Green Storage Transformation Plan in 3 parts

OUR COMMITMENT

reduce by 40% our direct CO₂ emissions in 2030

SUSTAINABLE SOLUTIONS

Support our customers improving their Environmental Footprint

NET-ZERO SOLUTIONS

Promote Energy Transition through Decarbonized Energy Storage & CCUS

Underground Storage Excellence

- An **international Group,** more than 55 years of experience, nearly 500 employees
- We do: Consulting, Engineering,
 Construction management, Operation &
 Maintenance
- On all Underground Storage Techniques (Porous reservoir, Salt & Mined rock caverns)
- For all energies (Liquid, Liquefied and Gaseous Hydrocarbons, H₂, NH₃, Compressed air and CO₂)

A key player for Underground Storages for all energies

...BY RELYING

on the synergies between our services

2- Role to be played by Hydrogen tomorrow

Today, The uses of many sources of Energy

H₂ consumption in the IEA's Net Zero Emission Scenario [Mt]

Industry Mobility Energy

Source: IEA, Roland Berger

UK: Location of the current storages (Oil & Gas)

Underground storage

TODAY

Underground storage and above ground storage provide comprehensive national coverage

TOMORROW with H₂?

Privately owned oil product pipelines

- UK Oil Pipeline (Shell, BP, Valero, Total)
 - Mainline Pipeline System (Esso, Valero, Total, Shell)
- Walton-Gatwick Pipeline (BP, Shell, Valero)
- West London Pipeline (BP, Shell, Valero, Total)
- -> Esso Pipeline
- Fina-line (Total)

--> Crude oil pipeline

- Tanker terminal

- Distribution terminals

Location of the current storages (Oil & Gas)

TODAY

Underground storage and above ground storage provide comprehensive national coverage

TOMORROW with H_2 ?

Above ground storage

Underground storage

3- Différents drivers for storage H₂

& H₂ market

Differents drivers for hydrogen storage

Robust supply chain

Continuity of supply in the event of failure/maintenance of H₂ production equipment – especially for sales to industries

Balance energy supply

To meet the daily & seasonal fluctuating needs (domestic - heating, industry, etc..)

Energy resilience

Strategic stocks to provide national energy security & resilience

Energy security

To balance H₂ produced with intermittent renewables Vital in a world of ever-increasing EnR capcity

Power generation

Renewable electricity generation is intermittent. During low generation supplied maintain by CCGT with the use of H2 instead of NG

Arbitrage

Optimisation of production according to the cost and availability of electricity (erasure or resale surplus)

Efficiency of CCUS

With H₂ storage, CCUS enabled H₂ plants can operate at a constant high load capacity

Massive storage infrastructure will be needed to deliver H₂ at scale VISION by 2030

Assumption: 5% Storage Capacity

PRODUCTION CAPACITY

10 GW of Electrolysers

(British Energy Security Strategy, 2022)

STORAGE CAPACITY

20 to **40** Caverns

5 GW X2 PRODUCTION CAPACITY

40 GW of Electrolysers

(European Commission, 2020)

STORAGE CAPACITY

125 to **250** Caverns

PRODUCTION CAPACITY

(Hydrogen Council, 2021)

STORAGE CAPACITY

> **400** Caverns

Acceleration in demand for H₂ underground storage & CCS

Knowledge Management actions taken to develop NZS

- O Liner for Lined Rock Cavern (H₂, NH₃, CO₂)
- O H₂ impact on well casings/completions, microbio activity
- O Surface Equipment (Compression, Hydrogen-methane separation, Hydrogen purification, etc.)
- O Increase the number of people working for NZS (70% today)

4- Different ways to store massive quantities of H₂

Solution 1: Salt cavern – Existing H₂ storage

SALT CAVERNS

- Liquid & Liquefied Hydrocarbons
- Natural Gas
- HYDROGEN
- Compressed Air & Effluents

MOST COMMON TECHNIC FOR H₂ UNDERGROUND STORAGE

- No Technical Show Stopper
- Nearly 2 000 existing storage Salt Caverns Worldwide
- 50 years industrial experience with up to 6 Hydrogen Caverns (incl. 3 in the UK)

Participation in several **R&D** projects for more than 10 years: ROSTOCK H, STOPIL H₂...

2019-2023, GK has done numerous studies in:

- **Reconversion of existing underground** storage to H₂ or a mix H₂/CH₄ for asset owners (UK, France, Spain, Germany, Netherland, USA, UAE, Morroco...)
- Creation of new caverns

Solution 1 – Salt Cavern: main characteristics, pros and cons

- Working gas up to 10 000t
- High flowrate
- Cost
- Conversion of existing salt cavern storage can be studied case by case

- Required geology not available everywhere
- Water for salt leaching
- Brine disposal
- Cushion gas (but potentially recoverable)

Solution 2: Porous media for hydrogen storage

DEPLETED FIELD & AQUIFERS

- Natural Gas
- Compressed Air, CO₂
- HYDROGEN

SOLUTION TO STORE MASSIVE VOLUME OF HYDROGENE

- Very common technique for Natural Gas storage
- Could be in depleted Oil/Gas fields or in saline aquifers
- Operated between 60 bar and 200 bar

Geostock is involved in the **HYSTORIES** (Project Leader).

Recently 2019-2023, numerous studies in **reconversion of existing underground** storage to mix H_2/CH_4 for asset owners (Belgium, Latvia, Spain, Germany, USA...) and new pure H_2 storage development feasibility assessments (microbiological activity)

Solution 2 – Porous Media: main characteristics, pros and cons

- Working gas capacity around 45 000t
- Cost

- Required geology not available everywhere
- High cushion gas, not recoverable
- Integrity of product quality (microbioligical activity) to be checked on case by case basis

Lined Rock Caverns for hydrogen storage

LINED ROCK CAVERN

- Natural Gas
- Liquid & Liquefied Hydrocarbons
- HYDROGEN

UNDERGROUND STORAGE IN THE HEART OF THE INDUSTRIAL CLUSTER

- More flexible from a geological point of view to be located in the heart of industrial clusters
- Agile, highly responsive and accurate

A unique know how in Rock Cavern: For more than 50 years, Geostock has been involved in 30% caverns commissioned or under construction, worldwide.

Construction of a LRC pilote for LNG: 2004-2006, in South Korea. Partnership between Geostock, Saipem and SKEC.

Suitable technology for NH₃, CO₂

Solution 3 – Lined Rock Cavern: main characteristics, pro and cons

- High flowrate
- Flexible storage, possibility to import and export at the same time
- Low volume of cushion gas
- Suitable for NH₃, CO₂

- Cost
- Liner choice to be optimised

3- Why the LRC solution?

Why developping the Lined Mined Rock Cavern?

Proximity needs

- Near industrial clusters (H₂ part of decarbonation solutions)
- Near ports (import / export)
- Near airports (Ex. Roissy CdG : 15% of the air traffic by 2035 = 3 to 5000 t H_2
- Near wind / solar farms & power generation
- **Buffer** for other products : NH₃ & CO₂

SALT is not everywhere

Few examples - UK Location of industrial clusters

LRC Potential

Few examples - France Location of industrial clusters

Project: **GEOGAZ H₂** 800 T H₂ - 100 bars **Commissionning 2028**

LRC Potential

Study :

Storage repurposing Capacity 80 000 m³ Products: H₂g, NH₃, CO₂

Prospects Dunkerque & Normandie

FOCUS on Marseille-Fos H2 Cluster GEOGAZ Lavéra Project - H₂ STORAGE

From 400t to 800t of gaseous H₂

Why storing Hydrogen at **Geogaz Lavera?**

- 3 existing mined rock caverns (SEVESO site): biggest multimodal storage site for LPG in
- Storage shared by the main local petro-chemical actors, with pipelines connection
- Loading bays for trucks and railcar & connected to **GPMM**: import & export

Commisionning

2028

Take away message

- As an <u>order of magnitude</u> → between 200 and 400 medium size underground storage might be needed by 2030-2035 to store hydrogen worldwide.
- Salt Cavern are a proven technology commercially available today
- Lined mined rock caverns is a solution to be considered for massive storage of hydrogen where there is no salt.
- Porous rock reservoirs is getting ready for commercialisation as well (Demonstrators may be required)

Thank you

Elodie ZAUSA Development & Sales Manager

Tel: +33 (0)1 57 98 89 22 Mobile: +44 (0)78 1238 1218

www.geostockgroup.com

