

Reducing Microbial Risk During Underground Hydrogen Storage

Dr Tim Armitage

Hydrogen Consultant

Hydrogen Storage in Salt Caverns 29th March 2023

Acknowledgements

Part of this work is extracted from the soon to be published study:

Site Selection Criteria to Reduce the Risk of Adverse Microbial Effects during Underground Hydrogen Storage in Porous Rocks

Eike M. Thaysen^{1,3}, <u>Tim Armitage^{1,2}</u>, Lubica Slabon¹, Aliakbar Hassanpouryouzband¹, Katriona Edlmann¹

¹School of Geoscience, The University of Edinburgh

² Energy Advisory, Arup

³ IDAEA, National Spanish Research Council

Why Arup?

Capability and Experience

The multidisciplinary nature of Arup covers the full spectrum of GeoEnergy and GeoStorage projects, from:

- Policy
- Transaction advisory
- Feasibility
- Detailed design
- Project management
- Operation
- Decommissioning and repurposing

Arup Hydrogen Projects

ARUP

Port of Auckland Hydrogen Pilot Project

New Zealand's first hydrogen energy facility, which will produce green hydrogen from electrolysis.

Project Cavendish Feasibility study to examine the potential to construct a large 'blue' hydrogen production facility in Kent near London

Project H100 Feasibility study determining the viability of a hydrogen gas distribution network in Scotland

> Department for Business, Energy & Industrial Strategy

Hydrogen Grid R&D Programme Supporting the £200m Hydrogen Grid Research & Development Programme exploring the use of hydrogen for heating

Hydrogen for Heat Programme

Managing the a £25m innovation programme on behalf of UK Govt that will demonstrate and de-risk the use if hydrogen for heating in UK homes and businesses.

Scottish Hydrogen Assessment

An assessment of the potential of using and producing

hydrogen in Scotland

ARUP

Energy systems: A view from 2035 What will a future energy market look like?

Hydrogen Storage in Lined Rock Shafts

BEIS HySupply 2 Competition – Partnership with Gravitricity

- Feasibility of storing hydrogen in purposebuilt lined rock shafts
- Shaft sinking with a capping system
- Internal pressure is passed through the lining system to the rock mass, allowing high storage pressures
- Not geologically constrained
- Small above ground footprint and shaft dimensions to suit end user

SHAFT EXCAVATION

A large diameter rotary drill rig excavates the shaft at the required depth and diameter.

LINING ASSEMBLY

The lining system and pressure vessel is constructed and lowered into position within the shaft.

SURFACE CONNECTION

The annulus surrounding the lining is backfilled with grout, and the pressure vessel is connected to above ground apparatus for operation.

Cavern & Shaft Engineering in Evaporites

Our Experience

Jansen Project – BHP Canada

Halite and potash mine development undertaken by BHP in Saskatchewan, Canada.

Woodsmith Project – Anglo American, United Kingdom

Potash mine under construction in North Yorkshire, UK. 4km of vertical shafts and 37km of tunnels and caverns.

Carrickfergus Salt Mines - DETI, NI

Arup were appointed to advise on the stability of 7 abandoned salt mines within their ownership.

Cheshire West and Chester Council

Northwich Salt Mine stabilisation is the largest single mine infilling contract in the UK.

Winsford Salt Mine - United Kingdom

Arup were appointed to advise the Planning Authority regarding plans for duplex mining of salt at an existing salt mine.

Lion Saltworks | United Kingdom

Undertake ground investigation, assess the risk of future settlement and or instability associated with the brine extraction and mining..

Porous Media and Depleted Gas Field

[6]

Porous Media and Depleted Gas Field

Estimated long duration energy storage needed (2035)

- 6.9 TWh ^[3]
- 48 TWh ^[4]
- 150 TWh^[5]

Typical salt cavern at 500 m depth = $0.05 - 0.1 \text{ TWh}^{[6]}$

• Meaning LOTS of caverns built in very short period!

Microbial Consumption

Problems of H2-eating microbes

- Consumption of product
- Corrosion of material
- Produces hydrogen sulphide (H2S)
- Clogging of pore network and wells
- Induced geochemical precipitation

Microbial Consumption

Microbial Consumption

Parameters that control microbial growth

- <u>Temperature</u>
- <u>Salinity</u>
- pH
- Pressure
- Geology
- Nutrient supply

Depleted Gas Fields on UKCS

Data Collection

- Controlled for temperature and salinity for depleted gas fields on the UKCS
- 75/173 fields
- By no means complete, however, gives indication of microbial risk on UKCS

Methodology

GIS-based mapping

Sterile/No Risk

Temperature > 122 °C

[7, 8, 9,]

Medium Risk

Temperature >55 °C Salinity >1.7 m NaCl [12]

Low Risk

Temperature >90 °C

[10, 11]

High Risk

Temperature <55 °C [7]

Results

Depleted gas field microbial risk

- Out of 75 gas fields analysed:
 - 9 No Risk/Sterile
 - 35 Low Risk
 - 22 Medium Risk
 - 9 High Risk

Results

Atlantic Margin, Northern, and Central North Sea

- Atlantic Margin, Northern, and Central North Sea are mainly oil fields.
- Lack of gas field data in this region.
- However, mostly high T and low salinity.

Results

East Irish and Southern North Sea

- East Irish Sea has low T (30-38 °C) and high salinity (3.4-5.1 M NaCL).
- Majority of data from SNS (65 fields), showing full range of risk.
- 7 fields No Risk, 34 Low Risk.

Energy Infrastructure

Context for depleted gas field microbial risk

• Repurposing offshore infrastructure

- Dense concentration of infrastructure in Southern North Sea
 - These link to No and Low Risk fields

Renewable Energy

Context for depleted gas field microbial risk

 Southern North Sea has overlap of No and Low Risk gas fields and large-scale wind farms.

Conclusions

Microbes pose a risk to hydrogen storage Temperature and salinity can control for microbial growth Out of 75 fields analysed, 44 are No or Low Risk

References

- [1] Wilson, G.: Why Energy Storage? All Energy Conference, 2022.
- [2] Wilkinson, M., Eldmann, K., Heinermann, N., Mabon, L., Viguier, R.: HyStorPor.
- [3] Cihlar, J., Mavins, D. and Van der Leun, K., Picturing the value of underground gas storage to the European hydrogen system. Guidehouse: Chicago, IL, USA, 2021. p.52.
- [4] Aurora, Long duration electricity storage in GB. 2022.
- [5] Scaffidi, J., Wilkinson, M., Gilfillan S., Heinemann, N., Haszeldine R.S.: A quantitative assessment of the hydrogen storage capacity of the UK continental shelf. International Journal of Hydrogen Energy, 2021. 46(12): p. 8629-8639.
- [6] Armitage, T.B., Edlmann, K.: UK Integrated Hydrogen Storage Database. 2022.
- [7] Thaysen, E.M., McMahon, S., Strobel, G.J., Butler, I., Ngwenya, B., Heinemann, N., Wilkinson, M., Hassanpouryouzband, A., McDermott, C., Edlmann, K.: Estimating microbial growth and hydrogen consumption in hydrogen storage in porous media Renew Sustain Energ Rev, 2021. 151(111481): p. 1-15.
- [8] Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T., Horikoshi, K., Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. PNAS, 2008. 105(31): p. 10949-10954.
- [9] Holden, J.F., Extremophiles: Hot Environments in Encyclopaedia of Microbiology M. Schaechter, Editor. 2009, Elsevier Academic Press
- [10] Wilhelms, A., Larter, S.R., Head, I., Farrimond, P., di-Primio, R., Zwach, C., Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Letters to Nature, 2000. 411: p. 1034-1037.
- [11] Pannekens, M., Kroll, L., Mueller, H., Tall Mbow, F., Meckenstock, R.U., Oil reservoirs, an exceptional habitat for microorganisms. N Biotechnol, 2019. 49: p. 1-9
- [12] Ranchou-Peyruse, M., Auguet, J.-C., Maziere, C., Restrepo-Ortiz, C. X., Guignard, M., Dequidt, D., Chiquet, P., Cezac, P., Ranchou-Peyrouse, A., Geological gas-storage shapes deep life. J Environ Biol, 2019. 21(10): p. 3953-3964.

Contact

Dr Tim Armitage

Hydrogen Consultant

Tim-B.Armitage@arup.com

Arup 10 George St, Edinburgh, EH2 2PF, United Kingdom <u>www.arup.com</u>