

UNIVERSITY OF BIRMINGHAM

The role of hydrogen in decarbonising the UK transport systems

he

ÍQ

Centre

Robert Steinberger-Wilckens School of Chemical Engineering University of Birmingham

Quantifying the real cost of fossil fuels

Toxic air a 'national health emergency' responsible for 40,000 early deaths and £20bn in costs each year, MPs warn

'It is unacceptable that successive governments have failed to protect the public from poisonous air'

Each car in London costs NHS and society £8,000 due to air pollution, report finds

'We know the health impacts of air pollution, and now the economic case for cleaning up the air we breathe has been laid bare'

Extreme weather to cost UK billions and leave 2.5m homes at risk of flooding unless ministers take action, warns WWF

Report on the risks posed by climate change in 2050 warns there could be significant damage to the economy if it is not 'future-proofed'

Hydrogen for Transport

Net Zero Heroes, January 2023

Sources: Independent/Dan Kitwood/Getty

Global vs. Local Zero Emissions

Climate neutral

synthetic, net-zero carbon fuels in combustion engines (NOx, PM, VOHC, noise)	certified green hydrogen in fuel cells (H ₂ O)
current technology (NOx, SO ₂ , PM, VOHC, fossil CO ₂ , noise)	grey hydrogen & natural gas in fuel cells (H ₂ O, fossil CO ₂)

zero local emissions

improving local air quality

fighting climate change

Net Zero Heroes, January 2023

Conventional Energy Infrastructure

Risks: import dependence, loss of GDP to imports, political influencing

Future Hydrogen Energy Markets

Achievements: increase in flexibility, reduction in import dependence, reduction of supply shortages

Hydrogen Comparisons

	Energy density				
lower heating values	volumetric	gravimetric			
Hydrogen	3.00 kWh/Nm ³	33.33 kWh/kg			
Methane	9.97 kWh/Nm ³	13.90 kWh/kg			
Natural Gas	8,8 - 10,4 kWh/Nm³	10,6 - 13,1 kWh/kg			
Propane	25.89 kWh/Nm ³	12.88 kWh/kg			
Buthane	34.39 kWh/Nm ³	12.70 kWh/kg			
Ammonia	3.9 kWh Nm ³ / 3.2 kWh/L	5.20 kWh/kg			
Crude Oil	10.44 kWh/l	11.60 kWh/kg			
Diesel	10.00 kWh/l	11.90 kWh/kg			
Gasoline	8.80 kWh/l	12.00 kWh/kg			
Methanol	4.44 kWh/l	5.47 kWh/ka			

1 Nm³ hydrogen corresponds to 0,34 l petrol

- 1 I liquid hydrogen corresponds to 0,27 I petrol
- 1 kg hydrogen corresponds to 2,75 kg petrol, 2,1 kg NG etc.

Electric Transport Solutions

Vehicle Efficiencies

Comparison: Shipping Fuel Consumption

- steaming distance 10 days, 150 to/dy, 16 500 MWh

source: transportgeography.org

Comparison: Fuel Bunkering Volumes

- steaming distance 10 days, 150 to/dy, 16 500 MWh

	Boil. Temp. [K]	Heat.Val. [kWh/kg]	Heat.Val. [kWh/L]	Heat.Val. [kWh/ Ncbm]	bunker- volume [cbm]	Fuel weight [to]
H2 (70 MPa)		33		3	9900	500
CH4 (25 MPa)		14		9	8900	1300
LH2	20	33	2.3		7000	500
NH3	240	5.2	3.2	3.9	5200	3350
СНЗОН		5.5	4.4		3750	3250
LNG	120	12.5	5.6		3500	1300
LSNG	111	14	6.3		3200	1200
M.Diesel		12	10		1500	1500

Energy Density Comparisons

Where: GAS is gasoline, KRS is kerosene, DF is diesel fuel and CO is crude oil.

From: Samuel Sogbesan/Robert Steinberger-Wilckens

Net Zero Heroes, January 2023

Externalities of Passenger Vehicle

values for Daimler A-class (2007) / (2022)

Customer Choices

Source: imgflip.com 14/20

Customer Choices (2)

diesel (bio)diesel (B3) gasohol (E25) ethanol (E100) compressed natural gas (CNG).

Hydrogen for Transport

petrol

source: wikipedia 15/20

Modal Shift

European Hydrogen Infrastructure

Filling up with H2

(162) opened (42) implementation

 hydrogen refuelling infrastructure is cheaper than public electrical charging and has less impact on the electricity grid operation

Hydrogen for Transport

Net Zero Heroes, January 2023

Building a Hydrogen Infrastructure: Painful

As of today: 95 H2 service stations are open in Germany

Hydrogen demand in Germany

(Based on the fuel stations operated by H2 MOBILITY.)

• forward investment is considerable and risky

Current Trends

- simplification of infrastructure requirements:
 - HGV transport
 - fleet operators
- liquid fuels for long-range transport
 - ammonia
 - liquified synthetic natural gas
 - methanol
- Europe:
 - establishment of hydrogen refuelling network
 - Intercontinal 'corridors' (TenT)

Thank you for your Attention!

Upcoming events:

JESS 2023 – Joint European Summer School, 10 to 15 & 17 to 22 Sept 2023, Athens

www.jess-summerschool.eu

Hydrogen for Transport

Any Questions?

contact: r.steinbergerwilckens@bham.ac.uk C-DICE is planning a sandpit on hydrogen and we would like YOUR help to generate the research problem to solve.

Scan the QR code to find out more.

The closing date for applications is 27 January 2023.

C-DICE/HyDEX Hydrogen Town Hall

https://www.cdice.ac.uk/events/c-dice-hydex-hydrogen-town-hall/

Delivering net-zero, transforming postdoctoral development

